Exercise 5

Differentiate.

$$
y=\frac{x}{e^{x}}
$$

Solution

Use the quotient rule to differentiate y.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{x}{e^{x}}\right) \\
& =\frac{\left[\frac{d}{d x}(x)\right]\left(e^{x}\right)-\left[\frac{d}{d x}\left(e^{x}\right)\right](x)}{\left(e^{x}\right)^{2}} \\
& =\frac{(1)\left(e^{x}\right)-\left(e^{x}\right)(x)}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x}(1-x)}{\left(e^{x}\right)^{2}} \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

Alternatively, the product rule can be used.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x e^{-x}\right) \\
& =\left[\frac{d}{d x}(x)\right]\left(e^{-x}\right)+(x)\left[\frac{d}{d x}\left(e^{-x}\right)\right] \\
& =(1)\left(e^{-x}\right)+(x)\left(-e^{-x}\right) \\
& =e^{-x}(1-x) \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

